Fabrication, densification, and replica molding of 3D carbon nanotube microstructures.
نویسندگان
چکیده
The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques (1, 2), and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization (3).
منابع مشابه
Fabrication of high-aspect-ratio polymer microstructures and hierarchical textures using carbon nanotube composite master molds.
Scalable and cost effective patterning of polymer structures and their surface textures is essential to engineer material properties such as liquid wetting and dry adhesion, and to design artificial biological interfaces. Further, fabrication of high-aspect-ratio microstructures often requires controlled deep-etching methods or high-intensity exposure. We demonstrate that carbon nanotube (CNT) ...
متن کاملAn Overview of Fabrication Methods and Applications of Carbon Nanotube Membrane in Environmental Engineering as Hydraulic Microstructures
The main purpose of this article is to study fabrication methods and applications of aligned carbon nanotube (CNT) membranes as a hydraulic microstructure in treatment processes. This paper emphasizes the use of CNTs as membrane in separation processes like water and wastewater treatment because of their exclusive advantages. Their most important characteristics are high mechanical strength aga...
متن کاملFabrication of robust carbon nanotube microstructures by elastocapillary densification
Carbon nanotubes (CNTs) have been studied extensively because of their outstanding electrical, mechanical and thermal properties. A common way to integrate CNTs in microsystems is to “grow” them from a catalyst layer using Chemical Vapour Deposition (CVD) [1]. The shape of the microstructures is controlled by patterning the thin catalyst layer which agglomerates to form catalyst nanoparticles. ...
متن کاملFabrication of glassy carbon microstructures by soft lithography
Ž This paper describes fabrication techniques for the fabrication of glassy carbon microstructures. Molding of a resin of poly furfuryl . alcohol using elastomeric molds yields polymeric microstructures, which are converted to free-standing glassy carbon microstructures by Ž . Ž 2. heating T ;500–11008C under argon. This approach allows the preparation of macroscopic structures several mm with ...
متن کاملHydrogel-driven carbon nanotube microtransducers
We demonstrate the fabrication and integration of active microstructures based on composites of 3D carbon nanotube (CNT) frameworks and hydrogels. The alignment of the CNTs within the microstructures converts the isotropic expansion of the gel into a directed anisotropic motion. Actuation by a moisture-responsive gel is observed by changing the ambient humidity, and is predicted by a finite ele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 65 شماره
صفحات -
تاریخ انتشار 2012